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Neural-network analysis of the vibrational spectra ofN-acetyl L-alanyl N8-methyl amide
conformational states
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Density-functional theory~DFT! calculations utilizing the Becke 3LYP hybrid functional have been carried
out for N-acetylL-alanineN8-methylamide and examined with respect to the effect of water on the structure,
the vibrational frequencies, vibrational absorption~VA !, vibrational circular dichroism~VCD!, Raman spectra,
and Raman optical activity~ROA! intensities. The large changes due to hydration in the structures, and the
relative stability of the conformer, reflected in the VA, VCD, Raman spectra, and ROA spectra observed
experimentally, are reproduced by the DFT calculations. A neural network has been constructed for reproduc-
ing the inverse scattering data~we infer the structural coordinates from spectroscopic data! that the DFT
method could produce. The purpose of the network has also been to generate the large set of conformational
states associated with each set of spectroscopic data for a given conformer of the molecule by interpolation.
Finally the neural network performances are used to monitor a sensitivity analysis of the importance of
secondary structures and the influence of the solvent. The neural network is shown to be good in distinguishing
the different conformers of the small alanine peptide, especially in the gas phase.
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I. INTRODUCTION

The goal of the present study of applying densi
functional theory to peptides for finding the electronic stru
ture of peptide-bonded amino acids in solution is to und
stand the connection between the structure and the func
of protein molecules. The study presented in this pa
serves as a pilot project for the greater goal of deriving fu
tion from structure in proteins. Up to now electronic stru
tures of dipeptides and tripeptides in vacuum have been
culated and measured by others, and the main conclu
from such work has been that ‘‘ionic’’ compounds, e.g., zw
terion molecules, are unstable in vacuum or in the isola
state in nonpolar solvents or inert matrices. Thus, to g
further insight into the problem via a quantum-mechani
analysis of the electronic structure of these biomolecules,
have added the effect of the solvent in our calculations,
added explicit water molecules to the peptide structures
simulate the effect of those waters directly hydrogen-bon
with the polar groups and subsequently embedded the
molecule1N water complexes’’ within a dielectric medium
via a continuum model. Here the continuum model has b
used to try to simulate the effects due to bulk water m
ecules, while the explicit water molecules have been ad
to simulate the effects of the water molecules which are
direct contact with the peptide.
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We shall also try here to demonstrate the usefulness
neural networks for quantum chemistry calculations a
spectroscopy. This is a very promising application to prot
structure and functionality, although at the moment it is on
applicable for small peptides. It is the hope that by calcu
ing detailed electronic properties and interactions of the p
tein with its aqueous surroundings in particular states, a
work trained on such results should be able to extrapo
and produce many of the other relevant functional states.
have obvious reasons to believe that an active protein ex
in many functionally important substates, as demonstra
e.g., by Frauenfelderet al. @1#. Detailed electronic calcula
tions can, due to limited computer resources and time, o
comprise a few of these conformational substates. Howe
it seems plausible that a neural network should be able
extract essential features of such calculations on a few c
formational substate structures and then generate man
not all, other substate structures that might be of relevan
The results of the following study seem to indicate that su
a task is possible.

In the first part of this paper the methodology of the d
tailed electronic calculations is reviewed and connected
the spectroscopy of protein structure experiments. Here
give only a short presentation of density-functional theo
with the goal to give a feeling for what can be calculated
this time @2–29#. The development of density-functiona
theory with respect to its application to problems in biophy
ics, for example, the prediction of vibrational circular dichr
ism ~VCD!, Raman spectra, and Raman optical activ
~ROA! spectra, is a very exciting area@30–35#. Here one
must go beyond simple local-density approximation~LDA !
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©2001 The American Physical Society05-1



li
-
e
o
n
rk
n
r o
te

tro

pi

ro
ry
tu
t
re
s
ra

be
C

a
on

s

A
o
a

ed
t

tro
a
na
e
ve
tr
ec
c
s
e
y-
an
an
en
ith
u
in

id
,
s

en-
ve
in-
on
ra-
si-

to
use

the
Ra-
em

ural
to

ol-
be-

opic
ility.
ost

in-
d
by

ec-

R,
ro-

y of
m is
nd
an-
od-
e
y

r
a,
s of
pro-
an
le,
rea

vel
bio-
are
The
he
on
eri-
ools
ere
of
nd

BOHR, FRIMAND, JALKANEN, NIEMINEN, AND SUHAI PHYSICAL REVIEW E 64 021905
and generalized gradient approximation~GGA! and intro-
duce the electron current density as a variable either exp
itly or implicitly in addition to the normal variables, the elec
tron density and the gradient of the electron density, to tr
magnetic field effects. In the second part the neural netw
application is explained in a more straightforward way a
more along the line of other applications of neural netwo
in biochemistry. The neural networks are first trained a
tested on the peptide molecule in vacuum and then late
the same molecule in a water solution. It turns out that wa
makes the task of predicting conformations from spec
scopic data harder.

There have appeared a few papers that are similar in s
to this study. In a paper by Fariselli and Casadio@36# a
neural network is used for predicting contact maps of p
teins from the input of chemico-physical and evolutiona
data. Once a contact map is obtained the protein struc
can be derived by minimization@37#. Their study shows tha
neural networks are better in predicting protein structu
than ordinary statistical methods. In another study Panco
et al. @38# have, on the basis of VCD spectra, used neu
networks to obtain structural information about proteins
yond the usual secondary structure content that CD and V
spectra provide.

II. PERSPECTIVES CONCERNING SOLVENT EFFECTS

Hydration is an important issue in genome research
exemplified by the structural change which occurs as
lowers the relative humidity of DNA below 75%~B-DNA
converts toA-DNA!. The phosphate groups in theA-helix
bind fewer water molecules than do the phosphate group
the B-helix, hence dehydration favors theB form of DNA.
The effect of hydration on the binding of proteins to DN
and RNA is still not well understood and most modeling
the interaction of proteins with DNA and RNA does not tre
the water molecules explicitly. In this work we have not tri
to treat the binding of the protein with DNA and RNA bu
study the effect of hydration on the structural and spec
scopic changes in small biomolecules, which function
model systems for DNA and protein hydration phenome
similar to the effect of hydration on the forms of DNA. Onc
the effect of hydration is understood at the molecular le
for small peptides and later for proteins we can go on to
to understand the effect of hydration on the binding and r
ognition process in protein-DNA/RNA complexes, and hen
to understand at a molecular level the biological proces
and how they are mediated in aqueous solution and th
ultimately, in the cell. Many of the current models treat h
dration macroscopically and do not include the structural
electronic effects due to the solvent microscopically or qu
tum mechanically. Our work here is an attempt to docum
the hydration effect in proteins at a microscopic level w
the hope of pointing out some of the deficiencies in the c
rent models and to provide some directions and insights
possible improvements.

The effect of hydration on small peptides and amino ac
is, in spite of their limited size, still a ubiquitous problem
hard to calculate, measure, and understand. Here we pre
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some DFT calculations on hydratedN-acetyl-L-alanine
N8-methylamide~NALANMA ! which will shed some light
on the effect of water on the structures, vibrational frequ
cies, VA, VCD, and Raman and ROA intensities. We ha
also constructed an artificial neural network to solve the
verse scattering problem of retrieving structural informati
of the biomolecule from spectroscopic data, that is, vib
tional frequencies, VA, VCD, and Raman and ROA inten
ties of isolated NALANMA.

We take two routes to get from the spectroscopic data
predict the structure of our test molecule. One route is to
density-functional theory~DFT! at the Becke 3LYP/6-31G*
level to calculate all the possible structures and for all of
structures the corresponding frequencies, VA, VCD, and
man intensities and ROA intensities and then compare th
to the experimental data. The other route is to train the ne
networks on a large combination of calculated correlations
infer or extrapolate new results. When going to large biom
ecules one can determine whether there is a correlation
tween the best predicted structural details from spectrosc
data and the data connected to secondary structure stab
This is in order to see which spectroscopic data are the m
important in determining the secondary structures.

The larger goal is to utilize neural networks for determ
ing the structural minima. At these minima VA, VCD, an
Raman intensities and ROA intensities are calculated
DFT in order to produce training data, that is, sets of sp
troscopic data correlated withf2c angles for the network.
Other methods, such as x-ray crystallography and NM
have only been utilized to determine the native states of p
teins. Spectroscopic measurements provide the possibilit
determining the denatured states of proteins. The proble
to know the structures and VA, VCD, Raman spectra, a
ROA spectra of the conformational states of proteins. P
coska and co-workers have utilized neural network meth
ology to find correlations of VCD spectra with the nativ
states of proteins by utilizing the known NMR and x-ra
crystallographic structures@38#. Our work complements thei
work in providing correlations of VA, VCD, Raman spectr
and ROA spectra and the higher-energy denatured state
peptides and proteins. These denatured states can be
duced under various experimental conditions, that is, in
aqueous solution under a variety of conditions, for examp
at various pH, salt conditions, and by the presence of u
and other denaturing agents.

In that sense one should be able to predict higher le
intermediate-energy states during folding processes of
molecules with the help of neural networks, once they
trained on known sets of intermediate energy states.
great thing about utilizing neural network techniques for t
inverse scattering problem of deriving structural informati
from scattering data is that it goes hand in hand with exp
ments and DFT calculations in the sense that one of the t
can support the other when it fails. This means that wh
there is no known structure for the conformational states
the protein but measured VA, VCD, Raman spectra, a
ROA spectra, one should use neural networks.
5-2
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III. DENSITY-FUNCTIONAL ANALYSIS OF HYDRATION
EFFECTS ON SMALL PEPTIDES

AND AMINO ACIDS

A. Standard formula

The principles of density-functional theory are tight
coupled to wave-function theory. It is not a completely ind
pendent formulation of quantum mechanics. Here we s
try to give a brief overview of the early attempts at develo
ing an independent theory and how the problems were o
come by borrowing from wave-function theory. This borrow
ing has helped overcome some of the fundamental probl
with a pure and independent density-functional theory,
has also introduced some new problems. One is very fun
mental, the definition of thecorrelation energy. In wave-
function theory, the correlation energy is defined as the
ference between the exact Hartree-Fock energy and the e
energy. Clearly this definition is not a good definition for
pure and independent density-functional theory. Hence o
definitions for the density-functional theory correlation e
ergy have been proposed@39#. Another is the definition of
exchange energy. Within Hartree-Fock theory the excha
energy~or better named the exchange integral! is clearly de-
fined. It does not have a purely classical analog and hen
is not clearly obvious how to form the exchange energy fu
tional in terms of the electron density. Hence here also so
confusion arises. Here we try to make clear the connect
between a pure and independent density-functional the
and wave-function theory, first at the Hartree-Fock level a
then a more generalized form, the highest being a f
configuration-interaction formulation, which gives us a fo
malistic way to get the exact energy in theory, but is n
feasible and practical for a many-electron atom, and certa
not attainable for a polypeptide or protein.

Hence we must make approximations. But what one se
whenever one makes an approximation is to underst
clearly what one is giving up by making this approximatio
One must make a clear distinction between an assumptio
premise and an approximation. One further approximat
which is many times overlooked is the Born-Oppenheim
approximation. In many cases in wave-function theory
work within the Born-Oppenheimer approximation and f
to mention and to understand the consequences of this.
all properties are calculable or even meaningful with
Born-Oppenheimer approximation. A case in point is t
magnetic dipole moment and the derivative of the magn
dipole moment with respect to the nuclear velocities, that
the atomic axial tensor of Stephens@40# and Buckingham
et al. @41#. To calculate the VCD spectra one requires the
non-Born-Oppenheimer properties. Hence one must ha
clear understanding on how to go beyond the Bo
Oppenheimer approximation within the realm of a pure a
independent density-functional theory also. Finally the c
cepts of perturbation theory and finite field perturbati
theory need to be generalized if one wishes to be able
calculate all of the properties within the density-function
theory which one can currently calculate within wav
function theory. If the DFT is to achieve its goal, that is,
surplant wave-function theory, then one must be able to
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culate all properties within the density-functional theo
which we can do within the wave-function theory. This
clearly not yet possible. As one attempts to reformul
wave-function perturbation theory to density-functional p
turbation theory, one then must address the same prob
one addresses when trying to address simple den
functional theory, where one only wishes to determine
ground-state potential-energy surface, that is,E@r(rW),RW #.

The first Hohenberg-Kohn theorem@2,42,43# proves that
the electron density determines the energy and hence re
mulates the basic equation to solve as one in which one
to determine the electron density rather than the wave fu
tion. The energy functional can be written as

Ev@r#5T@r#1Vne@r#1Vee@r#5E r~rW !v~rW !drW1FHK@r#,

~1!

where

FHK@r#5T@r#1Vee@r# ~2!

and v(rW) is the external potential andT@r# the kinetic en-
ergy. The second Hohenberg-Kohn theorem provides
energy-variational principle which enables one to find t
density that minimizes this energy functional. The problem
that we do not know the functionalFHK@r# exactly. Many
functionals have been developed which try to address
problem.

Here we focus on the total energy functionalE@r# ex-
pressed as

E@r#5E r~rW !v~rW !drW1T@r#1Vee@r#. ~3!

This formulation of DFT which introduces orbitals into th
problem is very similar to that of Kohn and Sham and P
and Yang. This has been done so that one has a good re
sentation for the kinetic energy functionalT@r# and the
electron-electron repulsion functionalVee@r#, that is, the last
two terms in Eq.~3!.

The early pure DFT models, for example, the Thom
Fermi model, had the seemingly insurmountable problem
trying to find the kinetic energy functionalT@r# and the
electron-electron repulsion functionalVee@r#. In terms of the
spin orbital and occupation numbers, the exact expression
the ground-state kinetic energyT is known:

T5(
i

N

ni^f i u2
1
2 ¹2uf i&, ~4!

where thef i and ni are the natural spin orbitals and the
occupation numbers, respectively. Note that the Pauli p
ciple requires that 0<ni<1. Using the Hohenberg-Kohn
theorem, the kinetic energy functionalT@r# is a functional of
the total electron density. Here we have expressed the
electron densityr in terms of orbitals,
5-3
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r~rW !5(
i

N

ni(
s

uf i~rW,s!u2. ~5!

This helps us get insight into how to deal with the kine
energy functional. By assuming the system to beN noninter-
acting electrons these expressions simplify to

Ts5(
i

N

^f i u2
1
2 ¹2uf i&, ~6!

where thef i are the natural spin orbitals and their occup
tion numbers are now 1 for the occupied orbitals and 0
the virtual orbitals, respectively. Using the Hohenberg-Ko
theorem, the kinetic energy functionalTs@r# is a functional
of the total electron density. Here we have expressed the
electron densityr in terms of orbitals,

r~rW !5(
i

N

(
s

uf i~rW,s!u2. ~7!

But how do we deal with the electron-electron repulsi
functional? The classical expression for the electron-elec
repulsion would give us the term

Jee@r~rW !#5
1

2 E r~rW i !r~rW j !

r i j
drW idrW j . ~8!

Here one gets the classical Coulomb repulsion integral
ones loses or does not get the term that comes from
change, which one gets when one uses wave-function the
that is, the term one gets when one uses one-electron
orbitals and an antisymmetric wave function that satisfies
Pauli principle with respect to the exchange of two particl
usually a Slater determinant. This is a term that one get
the Hartree-Fock level using a Slater determinant and ar
from the exchange of particles, hence the name excha
energy or exchange integral. It is a purely quantum effect
to the fermion nature of electrons, indistinguishability
identical particles. How to formulate this term in terms
only the electron density is similar to the problem we h
with how to form the general electron kinetic energy fun
tional in terms of only the density. But by forming the de
sity in terms of orbitals, we are able to obtain an approxim
form for the electron kinetic energy in terms of orbita
Similarly an exchange energy functional can be obtained
terms of orbitals. One can use expressions from wa
function theory to generate approximations to the exact fu
tionals when the density is formed from orbitals. Then all
the remaining errors can be lumped in the expression wh
has been called the exchange-correlational functional.
exchange-correlational energy functional then becomes

E@r#5Ts@r#1E r~rW !v~rW !drW1Jee@r#1T@r#2Ts@r#

1Vee@r#2Jee@r# ~9!

or
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E@r#5Ts@r#1E r~rW !v~rW !drW1Jee@r#1EXC@r#, ~10!

where the exchange-correlational functionalEXC is given by
the following expression:

EXC5T@r#2Ts@r#1Vee@r#2Jee@r#. ~11!

The EEC which we have used in this work is a hybri
exchange-correlation functional, the Becke 3LYP~B3LYP!
functional, defined by the following expression:

EB3LY P
XC 5ELDA

X 10.20~EHF
X 2ELDA

X !10.72DEB88
X 1EVWN3

C

10.81~ELY P
C 2EVWN3

C !. ~12!

This functional has been implemented in the Cambrid
Analytical Derivatives Package~CADPAC!, Gaussian, and a
variety of other wave-function~orbital! based density-
functional-based codes. The first term is the local excha
functional,ELDA

X , defined by

ELDA
X 52

3

2 S 3

4p D 1/3E r4/3d3rW, ~13!

wherer is the electron density. This functional was deve
oped to reproduce the exchange energy of a uniform elec
gas. The second term adds an admixture of Hartree-F
local exchange to the LDA local exchange term. T
Hartree-Fock local exchange functional gets its functio
form from Hartree-Fock theory, but replaces the Hartre
Fock orbitals by the Kohn-Sham orbitals,

EHF
X 52

1

2 (
i , j

E E f i* ~x1!f j* ~x2!f j~x1!f i~x2!

r 12
dx1dx2 .

~14!

The third term includes an admixture of Becke’s gradie
correction,EBecke88

X , to the LDA exchange. TheEBecke88
X is

defined by

EBecke88
X 5ELDA

X 2gE r4/3x2

~116g sinh21x!
d3rW, ~15!

wherex5r24/3u¹ru and g is a parameter chosen to fit th
known exchange energies of the noble gas atoms, wh
Becke defines as 0.0042 Hartrees. The fourth term acco
for the VWN3 local correlation function@44#. Vosko, Wilk,
and Nusair~VWN! proposed the following functional form
for the correlational functional:

EVWN
C ~r s ,z!5EC

0 ~r s!1a~r s!F f ~z!

f 9~0!G@11b~r s!z
4#,

~16!

wherea(r s) is the spin stiffness andb(r s) is chosen to sat-
isfy ec(r s,1)5ec(r s), namely,

11b~r s!5 f 9~0!
ec8~r s!2ec

0~r s!

a~r s!
. ~17!
5-4
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For more details on the VWN and VWN3 functionals w
refer the interested reader to the original paper@44#, the book
by Parr and Yang on density-functional theory, and finally
the Gaussian andCADPAC user’s manuals and source co
for direct implementation. Finally the last term adds an a
mixture of the Lee, Yang, and Parr~LYP! correlation correc-
tion @13#.

In this Becke 3LYP functional, the coefficients for th
admixtures have been determined by Becke by fitting to
omization energies, ionization potentials, proton affiniti
and first-row atomic energies in theG1 molecule set. Note
that Becke used the Perdew-Wang 1991 correlational fu
tional in his original work rather than the VWN3 and LYP
The fact that the same coefficients work well with differe
functionals to some extent lends credence for using suc
mixture of Hartree-Fock and DFT exchange. This hyb
functional has been used extensively by various gro
where accurate Hessians are required to model the
VCD, Raman spectra, and ROA spectra. Other less accu
functionals may be appropriate for simple energy and gra
ent calculations, but for property surfaces that involve el
tric field, magnetic field, and nuclear displacement pertur
tions along with their couplings, these more accur
functionals are essential.

Becke 3LYP level analytical Hessian, atomic polar ten
~APT!, atomic axial tensors~AAT !, and electric dipole–
electric dipole polarizability derivatives~EDEDPD! calcula-
tions have also been implemented inGAUSSIAN98. Finite field
perturbation theory has been used to calculate EDEDPD
quired to simulate the Raman intensities. The elec
dipole–magnetic dipole polarizabilities~EDMDP! and the
electric dipole–electric quadrapole polarizability~EDEQP!
have been calculated withinCADPAC @45#. The derivatives
with respect to nuclear displacements have been calcul
with the finite differences techniques. The Becke 3LYP le
force fields have been shown to be more accurate than
stricted Hartree-Fock~RHF! level Hessians which must b
scaled to get good agreement with both experimental
quencies and VA and VCD intensities@30,46,47#. The nature
of the normal modes has been shown to depend on the
ing scheme one chooses to scale the Hessian. The adva
of the Becke 3LYP level of theory is that the Hessians
pear to be accurate enough to predict the VA and VCD
tensities when coupled with accurate APT and distribu
origin ~DO! gauge atomic axial tensors without scaling. T
number of molecules for which the Becke 3LYP Hessia
have been calculated and the associated VA and VCD s
tra predicted has been quite limited. The good agreem
shown to date has included only a small number of fu
tional groups and the comparison has been with meas
ments of the VA and VCD spectra of molecules in nonpo
solvents.

In this work we present results on the small pept
N-acetyl-L-alanine N8-methylamide ~NALANMA !. This
molecule can in a sense be considered as a three amino
peptide since the alanine molecule is capped at both en

B. Effects of water solvent

We present here optimized structures of NALANMA wi
four water molecules starting from our 6-31G* Becke 3LYP
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optimized structures. The relative energies of these co
plexes are compared with the isolated molecule values.
goal has been to model biomolecules by explicitly add
water molecules to provide calculations that can be use
critically evaluate solvent models and specific models dev
oped for water. The H-bonding picture as exemplified
some of the simple water models is clearly wrong, and
feel that conclusions based on these models can be critic
evaluated utilizing the better models of water@31,32,48#.

Various models have been developed for implicitly a
explicitly taking into account water at various levels@49–
53#. At the molecular mechanics level, the force field can
parametrized against experimental data measured on
molecule in the aqueous solution. The force field is then
necessarily useful for doing calculations on the molecule
other solvents.

The hydrated structures presented here for NALANM
can be used to test the various water models before one
them in expensive molecular-dynamic simulations on p
teins and nucleic acids. The work is a part of our collabo
tive work at the German Cancer Research Center, the T
nical University of Denmark, and Helsinki University o
Technology to model proteins and nucleic acids along w
various ligands in the presence of water.

C. Methods for density-functional and vibrational calculations

Vibrational absorption and vibrational circular dichrois
spectra are related to molecular dipole and rotatio
strengths via

e~ n̄ !5
8p3NA

3000hc~2.303! (i
n̄Di f i~ n̄ i ,n̄ !, ~18!

De~ n̄ !5
32p3NA

3000hc~2.303! (i
n̄Ri f i~ n̄ i ,n̄ !, ~19!

wheree andDe5eL2eR are molar extinction and differen
tial extinction coefficients, respectively,Di and Ri are the
dipole and rotational strengths of thei th transition of wave
numbers n̄ i in cm21, f ( n̄ i ,n̄) is a normalized line-shape
function, andNA is Avogadro’s number. For a fundament
(0→1) transition involving thei th normal mode within the
harmonic approximation

Di5S \

2v i
D(

b
H(

la
Sla,i Pab

l J H (
l8a8

Sl8a8,i Pa8b
l8 J ,

~20!

Ri5\2 Im (
b

H(
la

Sla,i Pab
l J H (

l8a8
Sl8a8,iMa8b

l8 J ,

~21!

where\v i is the energy of thei th normal mode, theSla,i
matrix interrelates normal coordinatesQi to the Cartesian
displacement coordinatesXla , wherel specifies a nucleus
anda5x, y, or z,
5-5
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Xla5(
i

Sla,iQi . ~22!

Pab
l and Mab

l (a,b5x,y,z) are the APT and AAT of
nucleusl. Pab

l is defined by

Pab
l 5H ]

]Xla
^cG~RW !u~mW el!bucG~RW !&J

RW o

52K S ]cG~RW !

]Xla
D

RW o

u~mW el
e !bucG~RW o!L 1Zledab ,

~23!

wherecG(RW ) is the electronic wave function of the groun
state G, RW specifies nuclear coordinates,RW o specifies the
equilibrium geometry,mW el is the electric dipole moment op
erator, mW el

e 52eS i r̄ i is the electronic contribution tom̄el ,
Zle is the charge on nucleusl, andMab

l is given by

Mab
l 5I ab

l 1
i

4\c (
g

eabgRlg
o ~Zle!, ~24!

I ab
l 5K S ]cG~RW !

]Xla
D

RW o

US ]cG~RW o ,Bb!

]Bb
D

Bb50

L , ~25!

wherecG(RW o ,Bb) is the ground-state electronic wave fun
tion in the equilibrium structureRW o in the presence of the
perturbation2(mmag

e )bBb , wheremW mag
e is the electronic con-

tribution to the magnetic dipole moment operator.Mab
l is

origin dependent. Its origin dependence is given by

~Mab
l !05~Mab

l !081
i

4\c (
gd

ebgdYg
lPda

l , ~26!

whereYW l is the vector from 0 to 08 for the tensor of nucleus
l. Equation~26! permits alternative gauges in the calculati
of the set of (Mab

l )0 tensors. IfYW l50, and hence 0508, for
all l the gauge is termed the common origin~CO! gauge. If
YW l5RW l

o , so that in the calculation of (Mab
l )0 08 is placed at

the equilibrium position of nucleusl, the gauge is termed th
DO gauge@41,54–56#.

D. Raman and ROA calculations

1. Raman intensities

The Raman intensities are proportional to the Raman s
tering activity defined by

I j
Ram5gj~45ā j

217b̄ j
2!, ~27!

gj being the generacy of thej th transition.ā j
2 is the mean

polarizability derivative tensor defined by

ā j
25 1

9 ~Sla, jaxx
la1Sla, jayy

la1Sla, jazz
la!2, ~28!
02190
t-

while b̄ j
2, the measure of the anisotropy of the polarizabil

tensor derivative, is given by

b̄ j
25 1

2 $~Sla, jaxx
la2Sla, jayy

la!21~Sla, jaxx
la2Sla, jazz

la!2

1~Sla, jayy
la2Sla, jazz

la!216@~Sla, jaxy
la!2

1~Sla, jayz
la!21~Sla, jaxz

la!2#%. ~29!

abg
la andSla,i are defined by

abg
la5

]3WG~RW ,Eb ,Eg!

]Xla]Eb]Eg
U

RW 5RW o ,Eb50,Eg50

5
]abg~RW !

]Xla
U

RW 5RW o

~30!

and

Xla5(
i

Sla,iQi , ~31!

where WG denotes the ground-state energy,Xla is the
nuclear Cartesian coordinates with the indexl referring to
the nucleus, anda is thex,y,zspace coordinates.Ea is the
a component of the electric field. The role played bySla,i is
to map normal coordinatesQi into CartesianXi , index i
referring to the mode.

2. Raman optical activity (ROA)

Calculating the ROA intensities is slightly more involve
because they involve third-order derivatives with respec
the energy. The quantity of interest in the present work is
circular intensity differential~CID! given by

Da5
I a

R2I a
L

I a
R1I a

L , ~32!

whereI a
R and I a

L correspond to the scattered intensities w
lineara polarization in right and left circularly incident light
respectively. The detailed formulas forDa are derived in
Refs.@57,58#.

E. Results for the DFT calculations

In Table I we present the relative energies of isola
NALANMA and with four bound water molecules. The va
ues off andc ~measures of secondary structure in protei!
are also given. The starting structures for the bound wa
optimizations were the 6-31G* Becke 3LYP optimized ge-
ometries. To each of these structures four water molec
were added by the Insight program~Biosym Technologies,
San Diego, CA!. The details of these calculations and t
VA, VCD, Raman spectra, and ROA spectra for this m
ecule will be presented in a future publication. The structu
and energetics of the molecule are greatly affected by
solvent, consistent with large changes in the VCD spec
when one changes the solvent from carbon tetrachlorid
water. Note also that theC7

eq andC5
ext conformers both con-
5-6
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TABLE I. NALANMA with four bound water molecules, 6-31G* B3LYP relative energies.

Conformer fa ca
Energya

~kcal/mole! Conformer fb cb
Energyb

~kcal/mole!

C7
eq 282 72 0.000 Pp 294 128 0.000

C5
ext 2157 165 1.433 crystal 298 112 5.864

C7
ax 74 260 2.612 C7

ax8 59 2122 4.134

b2 2136 23 3.181 b28 2151 116 1.886
aL 68 25 5.817 aL8 61 52 2.754
aR 260 240 5.652 aR8 282 244 2.465
aD 57 2133 6.467 aD8 67 2111 3.715
aP 2169 238 6.853 aP8 2153 292 15.140

aIsolated NALANMA, 6-31G* B3LYP relative energies.
bNALANMA with four bound water molecules, 6-31G* B3LYP relative energies.
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verge to the same structure, which is the lowest-energy st
ture of NALANMA with four bound water molecules foun
by us to date.

In Table I we see the eight states~conformers! of
NALANMA which are characterized by thef,c values
found for NALANMA in the isolated state. Note that whe
this molecule is in aqueous solution, two of these lo
minima collapse into a single minimum. Each of these lo
minima ~states! has various substates due to the various
entations of the water molecules~environment!. Hence the
energy landscape has been modified by the aqueous env
ment, as similarly are proteins in either the cytoplasm
embedded in the various membranes in the cell. This ca
seen in thePp and crystal structures with similarf and c
values, but different energies. These differences are du
the different orientations of the water molecules, that is, d
ferent H-bonding patterns.

The structures in Table I are the intrinsic stable structu
~states! for the dipeptide NALANMA. When one adds on
residue, one would now expect 838 stable structures fo
tripeptide NA~LA !2NMA. Here one assumes that the on
stable structures are those which are allowed for the sim
dipeptide NALANMA, and the combinations of (f i ,c i) and
(f i 11 ,c i 11), where i 51 to 8, define the 64 stable struc
tures. But here one would miss any new structure that res
from interactions not present in the simple dipeptide mo
mer NALANMA. Similarly when one adds yet one mor
residue to get the quadrapeptide NA~LA !3NMA, one would
expect now 83838 possible stable structures. Here aga
one would miss those structures at the tripeptide level m
tioned earlier and also any new stable structure~s! which was
stabilized by interactions present in the quadrapeptide st
tures, but not found in the smaller dipeptide and tripepti
Note that our model system NALANMA is actually a capp
L-alanine. By capping the zwitterionicL-alanine with an
N-acetyl group (CH3CO-) on the N-terminus end, we form
peptide bond and now have the CvO group of residuei
21. Similarly, by capping the C-terminus end with a
N-methyl amide group (-NHCH3), we form a peptide bond
and now have the NH group of residuei 11. Hence we have
the possible H-bond interaction of the CvO group of residue
i with the NH group of residuei 12 in the dipeptide, the
02190
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CvO group of residuei with the NH group of residuei
13 in the tripeptide, and the CvO group of residuei with
the NH group of residuei 14 in the quadrapeptide. These a
important interactions and give stabilizing interactions
the C7 and the 310 and 3.613 helical structures found in the
dipeptide, tripeptide, and quadrapeptide, respectively. He
if one wants to be able to identify spectroscopic markers
these and other secondary structural elements in peptides
proteins, it is important to have the correct model co
pounds and structural features. Similarly if we want to
able to identify tertiary features, then we must use ev
larger model compounds and the specific structures~states!
of these model compounds. Rather than synthesizing
structures which make these structures stable and one o
low-energy structures or the global minimum, we can sim
late the spectra of these species~states! and present the the
oretical data to the training network. This is similar to th
work of Hagler and Maple in the development of class
force fields in the Potential Energy Functions Consortium
Biosym Technologies Inc. in the late 1980s and early 199
There they supplemented the experimental data with h
level ab initio calculations@59#. Here we use the same ide
to generate data for use in training neural networks to id
tify secondary and tertiary structural elements in peptid
and proteins. In the next section we present the neural
work theory that we have used in this work.

IV. NEURAL NETWORK ANALYSIS OF SPECTROSCOPIC
AND STRUCTURAL CORRELATIONS

A. The inverse scattering issue

The inverse scattering problem in an experimental sit
tion is defined by the situation of not having direct structu
information about a given object but with information pr
vided indirectly by the projections of the object in differe
scattering planes, e.g., as scattering data in specific d
tions.

In abstract mathematical terms the inverse scatte
problem given, for example, in the bimolecular structu
measurements mentioned above can be described by th
tegral expression
5-7
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Bi~rW,t !5E
V
Aj~rW8,t !Cji ~rWurW8,t !dV8, ~33!

whereBi is the detector signal function localized at a d
tancer away from a source described by a functionAi local-
ized at r̄ 8 and integrated over the source volumeV. The
convolution functionCi j is a Green’s-function matrix. The
problem, as it has been formulated here, is mathematic
unsolvable and is about determining the source functioA
from the detector functionB. The C matrix contains the de
tector’s projections of the source@60#. The infrared absorp-
tion spectroscopy and optical polarization experiments
determination of the structure of a biomolecule are typi
situations of inverse scattering problems.

B. Methodology

In this section we discuss the application of neural n
works to the problem of inverse scattering where the str
tural information of small biomolecules is predicted fro
spectroscopic data such as frequency, absorption~dipole
strengthD!, and differential absorption~rotational strength
R! data. The structural data are represented in the form
dihedral angles~f and c!. In the second round of calcula
tions we have also added Raman intensities and ROA in
sities in the input data. In the following we shall first give
description of how to utilize the artificial neural netwo
especially with respect to classifying spectroscopic data.

The basic elements of a neural network, the neurons,
processing units that produce output using a character
nonlinear function of a weighted sum of input data. A neu
network is a group of such processing units, the individ
members of which can communicate with each other thro
mutual connections. The network will gradually acquire
global information processing capacity of classifying data
being exposed~trained! to many pairs of corresponding inpu
and output data such that new output can be generated
new input. If a set of input values is denoted by$xj% and the
corresponding output is denoted by$yi% the processing of
each neuroni in the net can be described as

yi5 f S (
j

Wi j xj1h i D , ~34!

whereWi j are the weights of the connections leading to
neuroni and f is the characteristic nonlinear function for th
neuron. The network can be considered as a nonlinear
between the input and output data. The most straightforw
neural networks employed for this study were feed-forw
networks of the multilayered perceptron type~Fig. 1! or
more complicated recurrent neural networks equivalen
the ones used with real-time recurrent learning~RTRL! @61#.
The former networks have a unique direction of the d
stream such that input will be passed through the consecu
layers towards a specific layer of neurons that produce
output while the latter networks have a set of extra feedb
connections. The reason for choosing the feed-forward
work among many other types is due to its known ability
generalize speech recognition, image processing, and
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lecular biology data@62–65# and its rather simple structure
both with respect to the processing of data and the trainin
which the back-propagation error algorithm@66# is the most
commonly used and the one we shall employ. The train
procedure is performed until a cost functionC has reached a
local minimum~and hopefully even a global one!, e.g., by a
gradient descent. The cost functionC is normally written as

C51/2(
a,i

~ t i
a2zi

a!2, ~35!

which is simply the squared sum of errorst i being the correct
target value andzi the actual value of the output neurons.

It is important when utilizing neural networks to have
few basic facts of common knowledge about the architect

FIG. 2. The corresponding positions of the eight structures
picted in Fig. 3 of NALANMA. In the Ramachandran plot the d
hedral angles are shown along the two axis. The empty dots are
structures surrounded by explicit water molecules and the b
dots are those without water molecules.

FIG. 1. A schematic picture of a perceptron neural network w
three layers of neurons: an input layer, a hidden layer, and an ou
layer. Each of the neurons will be connected to all the neuron
the next and/or the previous layer. The input is here frequency~n!,
dipole strength (Di), and rotational strength (Ri).
5-8
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FIG. 3. The structures of the
eight conformers of NALANMA
in ball and stick representation fo
NALANMA 1four water mol-

ecules: ~a! Pp , ~b! C7
ax8 , ~c!

b28 , ~d! aL8 , ~e! aR8 , ~f! aD8 , ~g!
aP8 , ~h! crystal @31#.
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of the network in relation to the training. First of a
the network should be dimensioned according to the train
set, i.e., the number of adjustable parameters~the synaptic
weights and thresholds! should not exceed the numbe
of training examples. There is a heuristic rule that t
number of training examples should be around 1.5 tim
larger than the number of synaptic weights. Basically
ability to learn and recall learned data increases with the
of the hidden layer, while the ability to generalize decrea
with an increasing number of hidden neurons above a cer
limit. This fact can clearly be understood when one consid
the network as essentially a curve fitter between po
depicting relations between input and output data in
training set. Therefore it is also easy to understand tha
network can be overtrained when the training proc
reaches the point where the spurious data points are me
rized. The training process and the construction of the tra
ing set is of greatest importance because the predic
power of the network is dependent on how clearly the tra
ing set is defined and how many patterns are exposed. T
problems are nicely elucidated in a previous study wh
neural networks were applied to the task of water bind
prediction on proteins@67#.
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C. Evaluation

In order to evaluate the performance of the network va
ous statistical measures have been proposed. In the case
dual-valued output we shall be using the so-called Mathe
coefficient@68#. If we denote the two possible output value
by 1 and 2~e.g., signifying an event or no event!, and if p is
the number of correctly predicted examples of 1,p̄ the num-
ber of correctly predicted examples of 0,q the number of
examples of 1 incorrectly predicted, andq̄ the number of
examples of 0 incorrectly predicted, then we define the
efficient CM as

C5$pp̄2qq̄%/$A~p1q!~p1q̄!~ p̄1q!~ p̄1q̄%. ~36!

For complete coincidence with the correct decisions~ideal
performance! the measure is 1 and for complete anticoin
denceCM is 21. A poor net will giveC50, indicating that
it does not capture any correlation in the training set in sp
of the fact that it might be able to predict several corre
values.
5-9
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D. Implementation

The actual neural network to be used here for the inve
scattering problem of predicting peptide structures can
constructed from the SNNS~Stuttgart Neural Network Simu
lator! environment but is actually in this case a specia
designed real-valued processing neural network system
the feed-forward type. The networks are trained on a la
set of corresponding values of spectroscopic and struct
data that are produced from extensive density-functional
culations of our model peptide systemN-acetyl-L-alanine
N8-methylamide.

The input values, the spectroscopic data (n,D,R), to the
network are encoded by real values in the neurons of
input layer. In the second series of calculations we added
Raman~Ra! and ROA~Ro! data to the (n,D,R) data with the
resulting input being (n,D,R,Ra,Ro). The input numbers ar
read into a window with three numbers (n,D,R) at a time
corresponding to a specific pair of output values~f,c!. The
input values of the frequency will typically range from 40
3400 cm21, which will be normalized to the range 1–40
and partitioned on 20 neurons so that the first of these
input neurons take care of the range 1–20, the next neuro
21–40, etc. Values that are just below 20 will cause the fi
neuron to fire maximally while the other neurons are sile
Beside the 20 neurons for coding the frequencies there
similarly be 40 other input neurons for coding the dipole a
rotation values in the same way.

The output values, the structural data~f,c! from the net-
work, are encoded into mostly eight neurons in the out
layer, each representing one out of eight sections of the
machandran plot~Fig. 2! which in turn corresponds to a spe
cific range of the dihedral angles. Hence there are eight p
sible values of output, 1–8, generated in the output layer
determined by the most active neurons. The actual ou
value to be read out from the neurons is the position of
neuron closest to a calculated ‘‘center of gravity’’ of a giv
weighted firing pattern. If, for example, an output firing pa
tern appears from a symmetric group of neurons around
seventh neuron~containing the maximal signal! it will be
assigned the output value 7. A simple procedure to clas
an unknown pattern is by the value corresponding to
largest activation at the output unit that is assigned to
pattern. This is the usual winner-takes-all evaluation of
output of a classifier and is obvious in the case of bin
outputs but not so obvious for a larger set of output units

In order to facilitate the interpretation of a misclassific
tion we can group the spectral data in larger superclasse
structures, such as helical structures, that have a na
one-dimensional order inferred from physical properties
the spectra. It could also simply be yes or no, correspond
to a given conformation being present or not.

We have also trained a neural network on the same
lecular spectroscopy data of NALANMA in a water solutio
Here there are only four output states corresponding to
conformers, which we can possibly use as output values
the network.

E. Neural network results

In this section we shall discuss the performance of
network. The calculated set of numbers from the spectra
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be randomly divided into a training set and a test set be
disjunct from each other. To be sure about the homogen
of the training and/or test set one performs a cross validat
A neural network trained on the pairs of correlations in t
training set can then have the performance monitored by
ing to predict the correlations, i.e., the output numbers~struc-
tural data! in the test set from the corresponding input valu

The full set of calculated data~480 lines of corresponding
input numbers, three in each line, and an output numbe! is
thus divided up into a training set of 384 lines and a test
of 96 lines chosen at random from the full set. When o
evaluates the network there will be both a score for how w
the network has learned the correlations in the training
~prediction of the training set output values from the inp!
and the score for how well new correlations can be predic
in the test set.

In Tables IV and V the performance results of differe
configurations~different sizes of input layer, hidden laye
and output layer! of the feed forward neural network ar
shown. The best neural network configuration is appare
the one with 2033 input neurons, 24 hidden neurons, a
eight output neurons. The networks are also much bette
superclassification with only two output neurons basica
classifying stable structures, depending on whether the
quency numbers are high or low.

The small network configurations are clearly not able
comprehend any correlation in the data since the corresp
ing scores are of random predictability~i.e., 25% for four
output neurons!. For eight output neurons a random score
approximately 12% which is far below the actual scores
the larger networks. For the larger networks the performa
is improved by increasing the number of training cycles
least up to 2000. In Tables II and III we show a typic
section of the training set, i.e., the 14 first data lines in out
classes 1 and 8. When testing the networks a predicted
put value, varying between 1.0 and 8.0, is considered cor
if it differs less than 0.5 from the the correct value.

In Table III we present the corresponding data
NALANMA in a water solution. Due to the limited amoun
of statistics at this stage it is difficult to perform a detail
sensitivity analysis but it seems nevertheless possible, on
basis of the available amount of data, to deduce that
neural networks were better in learning the sections in
~f,c! plane of secondary structure stability, e.g., theaR re-
gion around (f,c);(260,240), than the other sections
Furthermore, for these stability regions, the lower-frequen
modes seem to be more important for the stability than
high-energy modes since they were more accurately lear
This could probably also be due to the dipeptide limitati
which means that the high-frequency modes do not invo
the contribution from the helix H bonds~from i to i 14! and,
therefore, the methods do not contain the most crucial in
mation abouta-helix stability. A forthcoming paper will in-
clude a sensitivity analysis of molecules comprising hel
type H-bond modes. Table IV contains the measured sc
~in rounded-off percentages! and correlation coefficients o
the performances concerning training and testing of vari
neural network configurations described by the sizes of th
neuron layers. The scores are calculated in percentages a
5-10
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number of correctly predicted output values over the to
number of values. A number is correctly predicted if t
corresponding neuron has the value60.5 of the correct
value, which is an integer between one and eight.

Table V contains similarly the measured scores~in
rounded-off percentages! and correlation coefficients of th
performances concerning the training and testing of the v
ous neural network configurations for the peptide with wa
The network configurations are again described by the s
of their neuron layers. Like in Table V the scores are cal
lated in percentage as the number of correctly predicted
put values over the total number of values. A number
correctly predicted if the corresponding neuron has the va
60.5 of the correct value, which is an integer between o
and four.

The results with water are markedly worse than the res
for the molecule in vacuum. This is due to the fact that
conformer states in solution are less distinguishab
Whereas we have data for eight states in vacuum, we h
data for only four states in solution, which makes the n
work performance less good, even with the same score, s
the number of output states is less. The fact that the sol
states are less distinguishable can be understood in term
functionality of the peptides in real biological surrounding

TABLE II. N-acetyl-L-alanine N8-methylamide training-se
data.

n ~cm21! Di Ri f2c output f2c section

3604.80 17.64 10.32 1 aR

3599.84 17.34 212.67 1 aR

3172.63 5.50 1.63 1 aR

3158.80 9.83 0.59 1 aR

3148.93 12.96 2.82 1 aR

3125.12 18.99 28.34 1 aR

3118.49 38.93 20.03 1 aR

3111.57 41.49 3.28 1 aR

3073.43 10.77 17.49 1 aR

3060.08 10.38 1.86 1 aR

3052.05 26.70 24.18 1 aR

3043.91 71.83 217.13 1 aR

1798.76 674.23 2321.40 1 aR

1789.94 240.50 268.28 1 aR

3610.52 25.16 1.65 8 C7
eq

3506.23 168.92 10.48 8 C7
eq

3171.22 3.84 20.70 8 C7
eq

3150.76 19.56 2.45 8 C7
eq

3148.57 20.48 20.11 8 C7
eq

3142.24 7.36 22.47 8 C7
eq

3138.64 23.91 24.24 8 C7
eq

3096.14 46.95 22.86 8 C7
eq

3085.30 5.46 6.26 8 C7
eq

3068.64 9.02 2.25 8 C7
eq

3066.68 20.25 24.32 8 C7
eq

3043.20 83.63 13.02 8 C7
eq

1785.84 685.88 24.30 8 C7
eq

1746.35 341.98 261.38 8 C7
eq
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since the molecules in this case can access the various
formational states more easily, and in many instances
potential-energy surface has a reduced number of minim
@48#. In the evaluation of the coefficientC which originally
was meant for binary outputs~negative/positive! we have
summed up contributions for each output class being ei
correct or not. In doing so we have overcounted false ne
tives which thus have to be normalized in order to cor
spond to the interpretation given of Eq.~36!.

TABLE III. Neural network training data for peptide with water

Frequency IR VCD Raman ROA Conformer

380 6.43 0 0.00 101 1
380 8.21 0 1.45 116 1
379 9.55 1 1.67 94 1
379 6.94 0 1.28 81 1
346 28.59 0 3.46 180 1
340 28.63 1 3.91 127 1
335 14.81 0 77.77 57 1
333 51.79 1 22.88 17 1
327 39.80 1 6.28 32 1
326 6.75 0 55.23 633 1
316 2.78 1 0.00 67 1
316 5.29 0 0.37 117 1
314 5.07 0 0.00 53 1
313 5.09 1 0.58 106 1
313 3.28 1 0.58 108 1
311 2.22 1 1.23 110 1
306 3.51 1 0.27 290 1
306 4.49 0 0.22 255 1
380 7.79 0 3.31 79 2
379 9.20 0 0.65 116 2
379 7.48 1 0.00 49 2
379 6.59 0 0.90 57 2
352 28.07 0 4.38 157 2
344 25.15 0 12.64 89 2
338 20.94 1 35.87 82 2
336 37.40 0 9.81 47 2
330 34.76 1 8.83 185 2
327 24.52 0 11.29 295 2
316 2.55 1 0.00 71 2

TABLE IV. Neural network performance results.

Network configuration
Nin3Nhid3Nout

Number
of train
cycles

Training
score
~%!

Test
score
~%!

Test correlation
coefficientC

(33334) 100 25 25 0.00
(33334) 1800 50 30 0.10

(3031038) 1800 60 33 0.21
(6032038) 900 65 40 0.24
(6032038) 1800 74 55 0.41
(6032032) 1800 83 68 0.48
(8034038) 1800 67 51 0.32
5-11
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V. CONCLUSIONS

The calculation of the VA and VCD spectra of biologic
molecules in the presence of water is now feasible and th
calculations provide benchmarks for simpler models for
calculation of VA and VCD spectra of larger biological mo
ecules in an aqueous solution. The 6-31G* RHF zwitterionic
structure ofL-alanine reported recently by Barron, Garga
Hecht, and Polavarapu@69# did not include water. Their
stable zwitterionic structure without water and our repor
structures are quite different. Recently we have also repo
the VA, VCD, Raman spectra, and ROA spectra of t
L-alanine zwitterion in an aqueous solution@32–34#.

TABLE V. Neural network performance results for peptide wi
water.

Network configuration
Nin3Nhid3Nout

Number
of train
cycles

Training
score
~%!

Test
score
~%!

Test correlation
coefficientC

(531033) 100 25 25 0.00
(532033) 1800 30 30 0.10
(3031036) 1800 34 32 0.21
(6032031) 900 38 35 0.24
(6032033) 1800 53 42 0.31
io

um

02190
se
e

,

d
ed
e

The network results show that it is possible to train neu
networks on scattering data to predict new correlations fa
successfully. A high performance is obtained when the n
work is classifying superclass structures; such structu
~e.g., helical! are limited to one location of the Ramacha
dran plot. Therefore the networks can be used to pre
secondary structures and stability in larger peptides fr
spectral data. In water the various states are much more
ficult for the network to classify. This is because the ene
differences between the various conformers mostly
smaller in solution, or in other words, in the gas phase
minima are more pronounced than in solution. However, i
the molecules in solution that are the most important to p
dict. For larger molecules with more amino acids we exp
the numbers of conformers to grow at least linearly with t
number of amino acids.
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